..:: BİLGİ VADİSİ ::.. BİLGİ VADİSİ RSS   TWİTTER   BİLGİ VADİSİ FORUM FACE GRUBU  

Anasayfa Kimler Çevrimiçi Bugünkü Mesajlar Forumları Okundu Kabul Et
Geri git   ..:: BİLGİ VADİSİ ::.. > BİLGİSAYAR & İNTERNET BÖLÜMÜ > BİLGİSAYAR GENEL EĞİTİM BÖLÜMÜ
Google

BİLGİSAYAR GENEL EĞİTİM BÖLÜMÜ Bilgisayar hakkında merak ettiğiniz her şeyi ve püf noktaları burada bulabilirsiniz

   

 
Konu Bilgileri
Konu Başlığı
Principal Component Analysis and Randomness Test for Big Data Analysis
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
 
Görüntülenme Sayısı
22

Yeni Konu aç Cevapla
 
Seçenekler Stil
Eski 23.06.23, 09:50   #1
jockers
 
jockers - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
 
Üye Numarası: 17635
Üyelik tarihi: 23.04.2018
Mesajlar: 12.651
Konular: 12651
Rep Bilgisi
Rep Gücü : 19
Rep Puanı : 10
Rep Seviyesi : jockers is on a distinguished road
Aktivite
Level: 70 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Paylaşım: 862 / 1725
Güç: 4217 / 34046
Tecrübe: 2%

İletişim
Standart Principal Component Analysis and Randomness Test for Big Data Analysis




pdf | 5.55 MB | English | Isbn:‎ B0BSST76V7 | Author: Mieko Tanaka-Yamawaki | Year: 2023


Description:

Alıntı:
This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the "meaning" of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.

First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, C = XX T , where X represents a rectangular matrix of N rows and L columns and X T represents the transverse matrix of X . Because C is symmetric, namely, C = C T , it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS -1 = SCS T using an orthogonal matrix S . When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).

Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting "trendy" business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L , and the correlation matrix C is an N by N square matrix, whose element at the i -th row and j -th column is the inner product of the price time series of the length L of the i -th stock and the j -th stock of the equal length L .

Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.

The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.



Principal Component Analysis and Randomness Test for Big Data Analysis.rar
Kod:
https://rapidgator.net/file/13236bc1599a504d3b75854b4c63a0ff/Principal.Component.Analysis.and.Randomness.Test.for.Big.Data.Analysis.rar

Principal Component Analysis and Randomness Test for Big Data Analysis.rar
Kod:
https://fikper.com/ogjwD6AGe4/Principal.Component.Analysis.and.Randomness.Test.for.Big.Data.Analysis.rar.html
ww.uydulife.tv
jockers isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Yeni Konu aç Cevapla

Bookmarks


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
Yeni Mesaj yazma yetkiniz Aktif değil dir.
Mesajlara Cevap verme yetkiniz aktif değil dir.
Eklenti ekleme yetkiniz Aktif değil dir.
Kendi Mesajınızı değiştirme yetkiniz Aktif değildir dir.

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı

Gitmek istediğiniz klasörü seçiniz


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2025, vBulletin Solutions, Inc.
Dizayn ve Kurulum : Makinist
Forum SEO by Zoints

E-Marine Education | Vbulletin | Tosfed |
www.bilgivadisi.biz   www.bilgivadisi.biz