..:: BİLGİ VADİSİ ::.. BİLGİ VADİSİ RSS   TWİTTER   BİLGİ VADİSİ FORUM FACE GRUBU  

Anasayfa Kimler Çevrimiçi Bugünkü Mesajlar Forumları Okundu Kabul Et
Geri git   ..:: BİLGİ VADİSİ ::.. > BİLGİSAYAR & İNTERNET BÖLÜMÜ > BİLGİSAYAR GENEL EĞİTİM BÖLÜMÜ
Google

BİLGİSAYAR GENEL EĞİTİM BÖLÜMÜ Bilgisayar hakkında merak ettiğiniz her şeyi ve püf noktaları burada bulabilirsiniz

   

 
Konu Bilgileri
Konu Başlığı
Deep Learning in Time Series Analysis
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
 
Görüntülenme Sayısı
11

Yeni Konu aç Cevapla
 
Seçenekler Stil
Eski 08.05.23, 19:13   #1
jockers
 
jockers - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
 
Üye Numarası: 17635
Üyelik tarihi: 23.04.2018
Mesajlar: 12.651
Konular: 12651
Rep Bilgisi
Rep Gücü : 19
Rep Puanı : 10
Rep Seviyesi : jockers is on a distinguished road
Aktivite
Level: 70 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Paylaşım: 862 / 1725
Güç: 4217 / 32959
Tecrübe: 2%

İletişim
Standart Deep Learning in Time Series Analysis




pdf | 5.72 MB | English | Isbn:‎ 0367321785 | Author: Arash Gharehbaghi | Year: 2023

Description:
Alıntı:
Deep learning is an important element of artificial intelligence, especially in applications such as image classification in which various architectures of neural network, e.g., convolutional neural networks, have yielded reliable results. This book introduces deep learning for time series analysis, particularly for cyclic time series. It elaborates on the methods employed for time series analysis at the deep level of their architectures. Cyclic time series usually have special traits that can be employed for better classification performance. These are addressed in the book. Processing cyclic time series is also covered herein.

An important factor in classifying stochastic time series is the structural risk associated with the architecture of classification methods. The book addresses and formulates structural risk, and the learning capacity defined for a classification method. These formulations and the mathematical derivations will help the researchers in understanding the methods and even express their methodologies in an objective mathematical way. The book has been designed as a self-learning textbook for the readers with different backgrounds and understanding levels of machine learning, including students, engineers, researchers, and scientists of this domain. The numerous informative illustrations presented by the book will lead the readers to a deep level of understanding about the deep learning methods for time series analysis.


Kod:
https://rapidgator.net/file/9d45c6817d4ed8bb4e1e07bda4ef325f/
Kod:
https://ddownload.com/ossn2mttmv29
ww.uydulife.tv
jockers isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Yeni Konu aç Cevapla

Bookmarks


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
Yeni Mesaj yazma yetkiniz Aktif değil dir.
Mesajlara Cevap verme yetkiniz aktif değil dir.
Eklenti ekleme yetkiniz Aktif değil dir.
Kendi Mesajınızı değiştirme yetkiniz Aktif değildir dir.

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı

Gitmek istediğiniz klasörü seçiniz


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Dizayn ve Kurulum : Makinist
Forum SEO by Zoints

E-Marine Education | Vbulletin | Tosfed |
www.bilgivadisi.biz   www.bilgivadisi.biz