..:: BİLGİ VADİSİ ::.. BİLGİ VADİSİ RSS   TWİTTER   BİLGİ VADİSİ FORUM FACE GRUBU  

Anasayfa Kimler Çevrimiçi Bugünkü Mesajlar Forumları Okundu Kabul Et
Geri git   ..:: BİLGİ VADİSİ ::.. > BİLGİSAYAR & İNTERNET BÖLÜMÜ > BİLGİSAYAR GENEL EĞİTİM BÖLÜMÜ
Google

BİLGİSAYAR GENEL EĞİTİM BÖLÜMÜ Bilgisayar hakkında merak ettiğiniz her şeyi ve püf noktaları burada bulabilirsiniz

   

 
Konu Bilgileri
Konu Başlığı
Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
 
Görüntülenme Sayısı
23

Yeni Konu aç Cevapla
 
Seçenekler Stil
Eski 04.05.23, 21:04   #1
jockers
 
jockers - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
 
Üye Numarası: 17635
Üyelik tarihi: 23.04.2018
Mesajlar: 12.651
Konular: 12651
Rep Bilgisi
Rep Gücü : 19
Rep Puanı : 10
Rep Seviyesi : jockers is on a distinguished road
Aktivite
Level: 70 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Paylaşım: 862 / 1725
Güç: 4217 / 33118
Tecrübe: 2%

İletişim
Standart Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play




pdf | 73.64 MB | English | Isbn:‎ 978-1492041948 | Author: David Foster | Year: 2019

Description:
Alıntı:
Generative modeling is one of the hottest topics in AI. It's now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models, and world models.
Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you'll understand how to make your models learn more efficiently and become more creative.
[*] Discover how variational autoencoders can change facial expressions in photos[*] Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation[*] Create recurrent generative models for text generation and learn how to improve the models using attention[*] Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting[*] Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN
Category:Computer Vision & Pattern Recognition, Machine Theory, Artificial Intelligence & Semantics


Kod:
https://nitroflare.com/view/B5EE3C059397E7E/
Kod:
https://rapidgator.net/file/65cb77f29cd0eec5eb56106168816f3f/
ww.uydulife.tv
jockers isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Yeni Konu aç Cevapla

Bookmarks


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Yeni Mesaj yazma yetkiniz Aktif değil dir.
Mesajlara Cevap verme yetkiniz aktif değil dir.
Eklenti ekleme yetkiniz Aktif değil dir.
Kendi Mesajınızı değiştirme yetkiniz Aktif değildir dir.

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı

Gitmek istediğiniz klasörü seçiniz


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Dizayn ve Kurulum : Makinist
Forum SEO by Zoints

E-Marine Education | Vbulletin | Tosfed |
www.bilgivadisi.biz   www.bilgivadisi.biz